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ELASTIC WAVE DAMPING IN THIN-LAYERED SATURATED POROUS MEDIA* 

A.G. EGOROV 

Monochromatic wave propagation in thin-layered saturated porous media is 
examined by averaging differential equations with rapidly oscillating 
coefficients. Particular attention is given to the transformation 
mechanism for the damping of such waves. Existing results in this area 
/l/ are extended and refined. 

The transformation mechanism /l/ of elastic wave damping in saturated porous media, 
proposed within the framework of Frenkel'-Biot theory, enabled the anomalous damping at low 
frequencies to be explained. The basis of the investigations /l/ was the approximate 
selfconsistent field method. In our opinion, another approach, relying on the well-developed 
procedure of averaging differential equations with rapidly oscillating coefficients /4, 5/, is 
possible and preferable. Results obtained using this method have a better foundation from the 
mathematical point of view and enable the limits of applicability of the formulas in /l/ to be 
established. The simplest model suitable for a study of the transformation damping mechanics 
is the model of a layered medium, which is understandably of independent interest. 

1. Let the characteristics of a saturated porous medium depend solely on the single co- 
ordinate x. We will first study the simplest case when the direction of wave propagation 
coincides with the x-axis. Independently of the transverse waves, the longitudinal waves are 
here described, according to /2, 3/, by the following system of equations: 

fi = mB1 + (1 -m-4B2, c0 =Bz(h -t 21~3) 

p1 = (xW, pz = p/p1 = (plm + pz (1 - 4)/p, 

The components %1 4 of the vector function u are here the mean displacment of the 
liquid phase relative to the solid and the displacement of the solid phase, respectively, p 
is the density, p is the compressibility, m is the porosity, k is the permeability, p,, is the 
liquid phase viscosity, h and p are Lame coefficients for the empty skeleton, and the subscript 
indicates the phase. The dimensionless parameter x& 1 is obviously related to the apparent 
mass coefficients in Biot's theory. 

All the characteristics of the medium plrpzrk,~,~,,,hr p are considered to be rapidly 
oscillating functions of the coordinate x. In other words,thin-layeredmedia are examined. 
This means that the spatial scale D of the change in medium characteristics is significantly 
less than the characteristic length h =fJfG1 of a monochromatic wave of the first kind. 
Here f = 2no is the frequency, and &, is the characteristic value of B(X). The specific form 
of the dependence of the above-mentioned parameters of the medium on x will be refined later. 
They can be periodic, random functions of 2. For the calculations below to be valid it is 
just essential that these functions "behave identically" in all arbitrarily remote parts of 
space t/15/, p.378). 

The solution of (1.1) corresponding to monochromatic wave propagation is sought in the 
form 

u = U (Y) exp [to (t - VBoplb)l (1.2) 

where the quantity o is fixed, y = slD is the "fast" coordinate, while E,lJ are the desired 
quantity and the vector-function, respectively. Slower growth at infinity than for a linear 
function is required of the function U and its derivatives /5/ 

U(3!(Y)llY I+0 (IY I-w), j=o,1,... (1.3) 

In the case, say, when the dependence of the medium parameters on y is periodic, this 
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condition is automatically satisfied after the natural requirement of the periodicity of U. 
Taking (1.2) into account, (1.1) reduces to the form 

(RU’)’ - iqE,,U - ife ((RU)’ + RU’) + 9 (PU - E’RU) = 0 

e = Dol/B,p,, q = D20$,~,lk 
(1.4) 

The physical meaning of the coefficient E is clarified above, and q is the square of the 
ratio between the characteristic scale of the medium and the characteristic length of damping 
of a wave of the second kind. 

Using the averaging method /4/, the solution of problem (1.4) is sought as a series in 
powers of the small parameter E 

% = %o + a%1 + a2%, + . . (1.5) 

Satisfaction of conditions of the form (1.3) is required of the functions ujl and uJa. 
Here the uJ2 (y) are defined to the accuracy of an arbitrary constant that is not essential 
here. Note that because the principal term of the expansion (1.5) of the relative displacement 
of the liquid and solid phases equals zero, (1.5) extracts the most intresting case of 
propagation of waves, on the average, of the first kind for study. 

Substitution of (1.5) into the left-hand side of (1.4) with subsequent setting of the 
coefficients therein to zero for different powers of a results in a sequence of so-called 
problems in a cell to determine uJ1, UJZ, %J: 

(rl,uO1’ + r22u02’)’ - ih,,’ = 0 (1.6) 

(rdh + r12u02’)’ - iqu,, - i%or.12’ = 0 

(rdh + rd+‘)’ - i&r,,’ - iSo [(r12u01’ + r22uoz’) + 

(rdh + rzzuoz)‘l - bar,, + pz = 0, . . . 

Only the first three equations of their infinite chain are written down here. They are 
adequate for finding Eo. 

In fact, expressing u02' from the first equation in terms of uol' 

u 02’ = i& (1 - Ar,,-‘) - r,,r,fu,, 

with a still unknown constant A and substituting this expression into 
find that uol = -i&,Ag(y), where g is the unique solution satisfying 
(1.3) for problem 

('12 + rg')' - iqg = 0 (i,, = rIzraa-‘, r = rll - T1,J 

Taking the average of both sides of (1.71 and using the equality 

(1.7) 

the second equation, we 
conditions of the form 

(1.8) 

<u,,'> = 0, that follows 
from the conditions imposed on uo2, we find that A = <raz-’ - g’f,,), after which uo2 is 
determined from (1.7) by simple integration. The angle brackets here and henceforth denote 
the mean over the space. Finally, taking the average of both sides of the third equality in 
(1.6), and using the conditions imposed on ullr Gand the expressions obtained above for 
uo2, we find that 

U01t 

Eo" = <P,A> = <P& <rzz -1 
- b+,,> (1.9) 

Thus, together with ZL~~,U~~, the quantity %, is determined completely by relationships 
(1.8) and (1.9). Utilization of the last equations of the chain (1.6) enables us in principle, 
to find E1, ullr UN etc. 

However, we will confine ourselves in this paper to studying the principal term %0 of 
the expansion (1.5) of the wave number %. We just note that if the medium is such that the 
wave numbers of the monochromatic waves propagating in the directions of increasing and 
decreasing x are equal, then %I = 0 and % = E0 + 0 (a'). The isotropy condition mentioned 
is perfectly natural and, for instance, is always satisfied for periodic media when the par- 
ameters of the medium are even functions of x. 

We note that the imaginary part of %, is generally different from zero. Hence, damping 
of the wave of the first kind under consideration here on the average already holds in a term 
of zero-th order of smallness. For a homogeneous medium %oa = pzrzz-’ is a real number and 
the situation is quite different. As can be seen /2, 3/, the damping factor CY normalized to 

0 l/Bopl is of the second order of smallness 
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Therefore, the presence of an inhomogeneity results in.a significant increase in the 
damping factor. For a quantitative estimate of this effect it is necessary to solve problem 
(1.8) in a cell with subsequent calculation of the wave number &, by means of (1.9). 

2. Following Gurevich and Lopatnikov /l/, we first consider the case when the medium 
parameters differ slightly from their mean values over the space. Here (1.8) is simplified 
by replacing the functions r and q therein by the spatial means and the problem of finding P& 
is solved quite simply for different models of the medium. Indeed assuming that 

i,, = <id + 6G (y) <G*> = 1 

and taking into account that the function 

exp [-(I + i) v I y - y, I Id2 (1 + i)Y <r>l 

is a fundamental solution of (1.8) for v = (<q>/[Z <r>])'lx in which r and q are replaced by their 
means, we obtain 

<g'W = 
62 <r>-1 <I - e!p i G(~)G(y,)ex~-[(1+i)vIy--yoIIdy~> 

-ca 
(2.1) 

Let Gr and -GR denote the imaginary and real parts of the quantity <g'i,,)normalized 
to P <r>-1 . Because of the smallness of the root-mean-square deviation 6 these quantities 
are identical with the damping decrement 6 and the dispersion of the wave propagation 
velocity V, apart from a factor which depends only on the mean characteristics of the medium 

6 = n (rzz-‘)-’ (~>-WGI (v- - v)Iv, = ‘I, <raz-l>-l <r)-‘PGR, 

urn = (<p>-’ <h + 2p + (1 - EO)Z B-‘>P* 

(2.2) 

Here V, is the velocity of propagation of waves of infinitely high frequency. 
Let us make the function G and the values of Gr and GR obtained for it from (2.1) 

specific. 

Model 1. G (y) = 1/?cos y. Then 

GI = 2vV(l + 4~9, GR = l/(1 + 4~4) (2.3) 

Model 2. G(y) is an ergodic stationary random field withcorrelation function (G(y, + y) 

G (Y)> = exp (-I Y, I). We have 

Gr = vl(i + 2v i- 2~7, GR = (1 + v)/(i + 2v + 2~3) (2.4) 

Model 3. G (Y) = G, for i-<y<j+i,j is an integer, GI are independent samples of 
a random variable with zero expectation and unit variance. In this case 

G1=1m 
e-(l+i)v _ 1 1 GR = Re 

1 _ e-(l+i)v 
(1 + i)v ’ (1 + i) -9 I 

The qualitative form of the functions GI(v), GR(v) is identical in all three cases. The 
function GR decreases monotonically from unity for v = 0 to zero for v = 00, and Gr vanishes 
for v=O,v=o~. Attention is drawn to the presence of the point v0 - 1 of the maximum of 
the function G1. Consequently, the damping decrement has a definite "selectivity": it is a 
maximum at the scale inhomogeneities D, = (471 (r) <k)* vo/fiopLof)“z for waves of frequency f and, 
conversely, the damping decrement at the scale inhomogeneities D is a maximum for waves of 
frequency f. = 4n <r> <k) ~,,l(i3~p~D*). 

We note that the model of the medium noted here as Model 2 was taken when computing the 
damping factors /l/. However, a stronger condition than the condition of smallness of e was 
utilized here, namely, in addition to the smallness of e the smallness of += con& Dam was 
also required in substance. In conformity with this, the formula G,=v /l/ was obtained 
for Model2, which is obviously an asymptotic representation of the more general relationship 
presented above as v-0. In fact, the condition for the smallness of v(v~v~) is satisfied 
only for quite low frequencies. Thus, for values of the parameters taken in /l/ (particularly 

D = 0.2 m and k= 10-12 m2) the frequency f. = 40Hz corresponds to the quantity Ye. 

3. The applicability of the results obtained above is limited to the case of media whose 
spatial dimensions of the inhomogeneities are identical or close to each other. There is 
obviously a fairly broad spectrum of inhomogeneity scales in real porous media. The difference 
between the theoretical results (2.3)-(2.5) and known experimental data may be due to this. 
It is that, as a rule, the experimentally measured damping decrement is constant (GI = const) 
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over a broad frequency range. Introducing media with a bountiful set of inhomogeneities of 
different size and equally often encountered, into the consideration enables this to be ex- 
plained. 

Let us formalize the representation of such media in an example of Model 3. We will 
first generalize it by defining G(y) as follows: G(y) = G, for Dj< Y<D,+~; Dltl -DD, = d,, 
D,=O,j= . . . . -1,0,1,... It was earlier assumed that dj = 1. Here the dj are considered 
to be independent samples of the random variable d. In this case, assuming the random variables 
G, and d, to be independent, formulas (2.5) acquire the form (E is the symbol for the ex- 
pectation value) 

GR -- PGI = E (1 - e-(l+i)va)/[(l + i) vEd] 

Let d take the values A-N, . . ., A_1, A,,, Al,. .., AN. It can be considered that A,, = 1 and 

Aj are enumerated in increasing order. We assume, firstly, that the volume fractions of 
particles of different dimensions are identical, so that d takes the value A, with probability 
olAj. The quantity IS is determined by the normalization condition. The second assumption 
is such that all the scales At are equivalent in the sense that the ratio A/+,/A, is indepen- 
dent of the number j. Hence it follows that the AI form a ge,ometric progression A -(I + A)', 

A > 0, the value of A1 is taken with probability u (1 + A)-' and cr = (1 + A)-NA,&+ A - 
(1 + A)-"N). 

It is natural to examine the limiting case when A-to, N-t M in such a manner that the 
length of the greatest piece (M = (1 + A)N) and least piece (M-l) of inhomogeneity remain 
fixed. It can be seen that the random variable d here converges weakly in the distribution 
to the random variable having a probability density function equal to zero outside the segment 
IM-‘, Ml and ((M - M-l) x~)-~ within' it. Therefore 

M 

GR - iGI + 
1 

s (1 -t ‘) (M - M-1) Y M_r 
(1 _ e-(l+i)vx) _&_ _ 

22 - 

s ((1 + i) Lw’v) - s ((I + i) Mv) 
2nlnM 

( s(Y)=&+ p+ 
Y 

Henceforth, the previous notation is conserved for the limit values of the functions I& 
and GI. 

Graphs of the functions GI (4 are represented in the figure for different M. Such a 
range of variation of the argument v is present within which Gr, and of course, the damping 
decrement also, are practically constant. This interval is fairly broad and includes, say, 
almost two orders of magnitude in Y for M=10, which is equivalent to four orders in 
frequency. It broadens in direct proportion to the quantity M as the latter increases, being 
determined formally by the inequality Mml((v< M. 

Neglecting terms of order vM-~,v-‘M-~ in (3.1) compared with one, we can obtain that 
within the interval mentioned 

GI = n48ln M), GR -= (‘/,) (1 - (In v t_ c)iln M) (3.2) 
c = y + 'i, In 2 - 1 = 0.076 

It is interesting to note that by virtue of the second of formulas (3.2) the quite slow 
(logarithmic) growth of the wave propagation frequency occurs in the interval of constancy of 
GI as the frequency increases 

U/V, = const + Pi3 In f (3.3) 

Let us also mention two identities that follow from (3.2) 

dh3~ = const, a%3ul@ = n-'u,j-z (3.4) 

that are understandably satisfied in the extracted range of variation of Y. In the first of 
them there is the frequency-independent constant of the medium. Let us especially single out 
the second identity of (3.41, requiring independence from neither the properties of the medium 
nor from the frequency of the wave being propagated for the complex ]%,-‘a-‘cwl3f. 

Analogous results hold even for another model of the medium with a broad set of inhomo- 
geneities of different sizes encountered equally often. It is obtained from Model 1 exactly 
as the model examined above was obtained from Model 3. Namely, it is assumed that 
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with arbitrary constants Tn. Values of GI and GR corresponding to such a dependence have 
limits for A-+O,N+oo and fixed (1 + A)N = M as before. It turns out that even this 
limit satisfies relationships (3.2)-(3.4). It is merely necessary to take c = '/,ln 2 in (3.2). 

4.Rejection of the simplifying assumption about the closeness of the parameters of the medium 
to their mean values over the space results in serious difficulties. And the matter here is 
not so much of complicating the relations betwen the desired characteristics of the process 
under consideration .6, u and the quantities G, and GR or the absence of an analytic sol- 

ution of problem (1.8) in a cell. It can be confirmed that with the exception of just quite 
exotic cases (2.2) remain fairly exact. The problem in the cell can be solved numerically. 
The main difficulty is the lack of information, or of replacing it by equally likely hypo- 
theses about the correlations of the quantities r.7~~~. A knowledge of these is necessary 
for making the problem in a cell specific. Without such a specification, we can only hope to 
obtain the qualitative properties and a priori estimates of the desired quantities. 

We will present some such general results concerning the nature of the dependence of 

G,, Gnt fG, on the frequency of the wave being propagated. For real values of the parameters, 
these quantities determine the damping decrement, the velocity variance, and the damping 
factor, respectively, as was noted above. The proofs rely on the following representations 

PG, <0-l= rn~" <--g-'((rQ')')- qp+ 2Q-12> (4.') 

6%x <r>-'= In;" <-r((g-'~I)')~-r-'gP+ Zq-‘,,‘~> 

The maximum is taken over all functions satisfying conditions of the form (1.3). The 
representations (4.1) follow directly from (1.8) and (1.9). The extremals in (4.1) are here 
none other than the imaginary and real part of the solution g (Y) of the problem in the cell 
(1.8). 

Fig.1 

Let the functionals on the right-hand sides of (4.1) be denoted by 'I (rl* Q). JR (@g; 9). 

Property -1. 
G, (0) = G, (co) = 0, 0 < G, < (I/Z) cr)lmin (r) 

We will prove just the upper bound for G,. The remaining properties follow in an obvious 
way from (4.1). We rewrite J, first in a somewhat different form 

Jl = C-g- ((3')' + q$p)* - 2r ($')a + 2 (f1* - F,,)) 9') 

The properties (1.3) of the function rl‘ were used here for the integration by parts. 
Discarding the first component on the right-hand side of this equality, we use the quantity 

as the upper limit of maxJ1. 
The problem occurring here of seeking the maximum is algebraic in nature. Solving it, 

we find 

max Jr < ?jr 0-l (ra - (r,,))*, 
* 

from which the estimate mentioned indeed follows. 

Property 2. Ga iS a positive, monotonically decreasing function of the frequency GR(x)= 0 
and 

(rilmax (r) < G, (0) d rr)lmin (r) 

To prove the monotonically of G, it is sufficient to establish that max J, (I&I; cq) Q max J, 
(% 9) for C > 1. The validity of this inequality becomes obvious if it is noted that 

In;" I, ($; cg) = Ill;, Jd (c-II& cq) = mqy C--r ((q-+,),)8 - .-wg* + 29’q_’ (‘J) 
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and the last expression is compared with max JR ($; 9). 

Property 3. fG, is a positive monotonically decreasing function of the frequency. 

5. We will now turn to the general case of wave propagation in a thin-layered medium 
when the wave vector makes an angle 'p different from zero with the x-axis. Particle displace- 
mentoccursin the plane formed by the wave vector ,and the x-axis. In this case the averaging 
procedure is completely analogous to that performed earlier. Omitting it, we present just the 
final results. However, first remaining the case cp = 0 we mention that 

E" = <A> <%-') (% = P&L) 

to accuracy O(S') for transverse waves in the notation taken above so that transverse waves 
do not damp out with the accuracy mentioned for cp = 0. 

In the general case it is impossibleto separate out the longitudinal and transverse waves 
individually. In their stead there is a pair of waves in each of which the vector of the mean 
particle displacement makes some angle q with the wave vector that is generally different 
from zero and ~~12. To accuracy O(9) this angle and the corresponding wave number are 
determined from the following system of equations 

<pZ> E-2 CDS '1 = cos n ((i-0-1)-1 -+ aL sin2 Xrp) t sin '1 sin 2rp (a, - 

,ZZ cos Zcp) 

(pa> E+sin q = sin q (A-l + 4a, sin2 'p - a, sin2 Zrp) + cos rl sin 2rpv 

(a, - a2 cos 2cp) 

.a1 = (Pi> - BA-I - (AC - B2) A-‘, a2 = <r,,) - (P~-‘)-~ - (AC - 

P) A-l 

B = (ror2,-1 - i,,r,g’), C = (ro2r22-1 - i12roh’) 

Here h(y) is the solution of the equation 

(P,,r, + rh’)’ - iqh x= 0 

and the function g(y) and the quantity A have been defined earlier. 
It can be shown that this system of equation has two solutions (Ep21 %I) and (Es2, 11,) for 

0 < ip < n/2. The subscripts p and S denote those that describe the longitudinal and trans- 
verse waves, respectively, as cp-+O. In the general case the imaginary parts of &, and E, 
do not equal zero. Consequently, unlike the cases 'p = 0, cp = nl2 damping of the zero-th 
order of smallness that is ensured by the transformation mechanism holds here for both kinds 
of waves. It can be computed under the additional assumption of a slight difference between 
the charactersitics of the medium and their mean values over the space. Note that with this 
assumption the particle displacement in the p-wave occurs principally in the direction.of the 
wave vector and in the s-wave in a perpendicular direction, Consequently, in this case it is 
natural to call these waves longitudinal and transverse. 

Let us define the function L(y) by the relationships 

r. (Y) = <rO> + oL, <L*> = 1 

analogous to those utilized above to define 
in addition to GI,GR by the formulas 

G, and let us introduce the quantities LI, LR,HI,HR 

- LR + iL1 = (1 - '/z (1 + i)y 1 Lty)L (yo) exp - [(l-t i)vly - yo~l~Yo> 

- HR + iH1 = (G (Y)L(Y) - (%)(lt- i)~~G(y)L(~~)exp - 

[(I + i)V.lY - YolldY,) 

Just as for longitudinal waves at cp = 0 the damping decrement and the dispersion of the 
propagation velocity are determined by the functions G1,GR, in the case under consideration 
they are determined by the functions Gr, LI,HI and GRt LR,HR, respectively. We present 
here just the appropriate expressions for the damping decrements 

6, = n <PO> <F>~WL~ sin2 29, 6, = n. <rg2-I> <F>-l X [6%SI $- 

461~ (PO> <F~.$~ HI sin2 cp + 4a2 (<r& (r22>-1 sin2 cp)" L,,] 

In particular, they show that the conclusions drawn earlier about the damping decrement 
of longitudinal waves at q = 0 remain valid for both longitudinal and transverse waves in 
the general case. It is also interesting to note that the maximum of transverse wave damping 
is reached in the case when the angle between the directions of stratification (the x axis) 
and wave propagation is 45". 
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DISPERSION OF INTERNAL WAVES BY AN OBSTACLE FLOATING ON THE 
BOUNDARY SEPARATING TWO LIQUIDS* 

S.A. GABOV, A.G. SVESHNIKOV and A.K. SHATOV 

The problem of the scattering of a wave, that propagates along the 
boundary between two liquids, by a semi-infinite obstacle floating on 
this boundary is solved in a two-dimensional formulation. The solution 
is constructed using the Wiener-Hopf method interpreted by Jones in the 
framework of linear potential theory /l/. The fundamental properties of 
the processes of scattering and reflection of a wave by the obstacle are 
stated and an asymptotic analysis of the field in a far zone is 
presented. 

1. We assume tht the half-space z<O is filled with a homogeneous heavy incompressible 
liquid of density pl, and the half-space z > 0 is filled with a similar liquid of density pz, 
where p1 > pa. Suppose that there are massive particles of some substance floating on the 
surface z = 0 between the liquids, and assume that the particles do not interact with each 
other as the separating boundary oscillates, or their interactions are negligible. The 
presence of such particles on the boundary between the liquids enables us to regard the boundary 
as a massive surface with a surface density of mass distribution (~20, where 0, being a 
function of the points of the boundary, may vanish in some of its regions. 

We shall confine ourselves to the two-dimensional formulation, and we shall consider the 
case when the floating substance is contained in the half-plane {x>O, z -= 0) only, and has 
constant density (Jo. The half-plane {z< 0, z = 0) represents the free separating boundary. 
We shall ascribe the index 1 to all quantities related to the lower liquid, and the index 2 
to those related to the upper liquid. 

Suppose that a stationary internal wave of the form 

lLjo ._ ujo (z, z.)~xP (---lot) =(-l)j+l A e~p (-al z 1 + lax - iwt), j =l, 2 

a =- 09 (pl -1 p,).'[g (P1-- PJI 

approaches the massive boundary from infinity along the boundary separating the liquids. Here 
uj= (j x- 1, 2) is the velocity potential and g is acceleration due to gravity. 

We shall consider the problem of the diffraction of the internal wave UjO on the massive 
part of the boundary. Let us express the amplitude Ui of the velocity potential as the sum 
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